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Abstract. In this paper, symmetry reductions for a generalized, cylindrical nonlinear
Schrédinger equation are presented. These are obtained using an extension of the direct
method, originally developed by Clarkson and Kruskal, which involves no group theoretic
technigues.

1. Introduction

In this paper we discuss symmetry reductions of a generalized, cylindrical nonlinear
Schridinger (GCNLS) equation

fu, +u,, + p7lu, ~ 6207 u 4 (ay + ay)(Juu),
+ (by +ib)u([ul?), + culul® + duluf?
=0 (1.1)

with &, a;, a,, b;, by, ¢ and d constants, not all zero. This equation is the special
case of the (2 4+ 1)-dimensional generalized nonlinear Schrédinger equation

W, + Vg + ¥y + (@ + iay) - V(P|HP)

+ (B8, +1i8y) - vV(¥P) + eyl + dy|v)
=0 (1.2)

with o, @, By, B; constant vectors, ¢, d constants and where V¢ = (¢,,9,),
which arises in quantum field theory (Clarkson and Tuszyfiski 1990, Dixon and
Tuszyriski 1989, Tuszyfiski and Dixon 1989). Setting ¥(z,y,t) = u(p,t)exp(ix8),
with p = (22 + y*)!/? and 8 = tan~?(y/z), in (1.2) yields the GCNLS equation (1.1).

The GCNLS equation (1.1) occurs, in some form, in a wide variety of physical
applications: in wave propagation in nonlinear and dispersive media, in quantum
field theory, the time-dependent Landau-Ginzberg model of phase transitions and
propagations of slowly varying electromagnetic wave envelopes in plasma, in the
theory of weakly nonlinear dispersive water waves, and in the nonlinear dynamics of
superfluid films for which w is the condensate wavefunction, related to the film
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134 P A Clarkson and S Hood

thickness and to the superfluid velocity. Of particular interest is the so-called
cylindrical nonlinear Schrédinger (CNLS) equation

fuy, +u,, + p'lup +uffu=0 (1.3)

which plays an important role in the theory of light wave envelopes in dispersive
media with nonlinear refractive index (Hasegawa 1990). Furthermore, the CNLS
equation (1.3) is the so-called ‘equation of self-focusing’. It is known that there exist
solutions of (1.3) which have a singularity in finite time and there has been much
interest in the determination of the structure of this singularity (cf Ablowitz and
Segur 1979, Landmaner a/ 1988, 1991, LeMesurieret al 1988a, b, Malkin and Shapiro
1591, Rasmussen and Rypdal 1986, Rypdal e o/ 1983, Rypdal and Rasmussen 1986,
Smirnov and Fraiman 1991, Wood 1984, Zakharov and Synath 1976).

Specifically, optical solitons (or wave packets), a manifestation of this nonlinearity,
find application in distortionless signal transmission along optical fibres. Such
applications occur in long-distance data transmission (~ 10000 km), removing the
need for expensive en-route ‘repeater’ equipment, e.g., in telecommunications, and
more recently in the field of high-speed uitra-low-noise data transmission. This latter
application makes use of a property known as ‘squeezing™ data are encoded on one
of a pair of conjugate quantum observables in which noise is naturally reduced, at
the expense of increased, but inconscquential, noise in the other variable (Abram and
Padjen 1991).

The classical method for finding symmetry reductions of PDES is the Lie group
method of infinitesimal transformations (cf Bluman and Cole 1974, Bluman and
Kumei 1989, Hill 1982, Olver 1986}, for which symbolic manipulation programmes
have been developed (a survey of the different packages presently available is given
by Champagne et al 1991).

There have been several generalizations of the classical Lie method for symmetry
reductions, in particular the non-classical method of group-invariant solutions, in the
folllowing referred to as the non-classical method, due to Bluman and Cole (1969).

Clarkson and Kruskal (1989), hereafter referred to as cX, developed a direct
and algorithmic method for finding symmetry reductions (in the following referred
to as the ‘direct method’) which is used to obtain previously unknown reductions
of the Boussinesq equation. Levi and Winternitz (1989) subsequently gave a group
theoretical explanation of these results by showing that ail the new reductions of the
Boussinesq equation could also be obtained using the non-classical method of Bluman
and Cole (1969). The novel characteristic about the direct method is that it involves
no use of group theory. It has been employed to obtain new symmetry reductions and
exact solutions for several physically significant PDES (Clarkson 1989a, b, 1990, 1992,
Clarkson and Hood 1992, Clarkson and Winternitz 1991, Lou 1990a,b, 1991, Lou
and Ni 1991, Lou e af 1991, Nucci and Clarkson 1992), which represent significant
progress.

There is much current interest in the determination of symmetry reductions of
PDES which reduce the equations to ODES. One then checks if the resulting ODE is
of Painlevé type (i.e. whether its solutions have no movable singularities other than
poles). It appears to be the case that whenever the ODE is of Painlevé type then it can
be solved explicitly, leading to exact solutions to the original equation. Conversely,
if the resulting ODE i not of Painlevé type, then often one is unable to solve it
explicitly.
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In this paper we apply the direct method to the GCNLS equation (1.1) and obtain
some new reductions for this equation and consequently also for (1.2).

2. Physical and mathematical background

In the first part of this section we give a brief interpretation of the GCNLS equation
(1.1), in the context of ‘solitons’t in optical fibres; the second part consists of a short
discussion of mathematical properties of the equation.

21. Physical background

We first consider the CNLS equation (1.3), which is the model equation describing
envelope soliton propagation. Here ¢ represents the ‘distance’ along the direction
of propagation, and p, the ‘time’ in the group velocity frame. The second and
third terms originate from the dispersion of the group velocity, that is the group
velocity is dependent on the wavelength, producing dispersion of the wave. The
nonlinearity is produced by the dependence of the wavelength on the intensity, w of
the wave. This is due to the ‘Kerr effect’ that is the dependence of the refractive
index of a dialectric material on the (square of the modulus of the) electric field
component of the electromagnetic field u. In fact, the refractive index n, is given by
n = ny(w) + n,| E|?, where w is the angular frequency of the light, E is the electric
field and n, is known as the ‘Kerr coefficient’ (Hasegawa 1990). In order to model
further physical effects, more terms may be added to (1.3). The fourth term in (1.1),
namely (a;+ia,)(|u[’x),, models nonlinear dispersion generated by the dependence
on wavelength of the Kerr coefficient.

One may also model dissipation originating from Raman scattering in the fibre:
if a sample is illuminated by monochromatic light, and the scattered light observed,
the observed spectrum consists of a strong line and weaker lines on either side.
These lines are interpreted as a manifestation of molecular vibrational transitions, ie.
the energy of the emitted photon may be altered from that of the incident photon
because of energy level transitions of molecules in the sample (Elliot and Dawber
1979, Ashcroft and Mermin 1976).

2.2, Mathematical background

Symmetry reductions of the (3 4 1)-dimensional generalized nonlinear Schrédinger

(GNLS) equation

iy, + A9 + () +iog) - V(¥|9P) + (6 +1i8) - wV(I¥F) + cvlw]' + dypf = 0
2.1

with ay, az, 8y, B, constant vectors, c, d constants and where A¢ = ¢, +¢,,+¢,,

and V¢ = (é,¢,,¢,) have been obtained by Clarkson and Tuszyfiski (1990) and

Clarkson (1992) who looked for plane wave reductions of (2.1), ie. reductions of the
form

V(z,y,2,t) = B R(E) exp{i[@(4) + &z, 9,2, 1)}}

t Strictly, the term soliton refers only to solutions of integrable equations. For convenience, we relax the
definition %0 as 10 include solutions of non-inteprable equations.
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with £ = (n;2+ nyy+ naz)n(t) and where (1), n(t) and ¢(z, y, 2,1) are specified
functions and n = (n;,n,,n,) is a constant unit vector. In these reductions, R(£)
and ©(¢) were expressed in terms of the second and fourth Painlevé transcendents
(cf Ince 1956), Jacobi and Weierstrass elliptic functions, Airy functions and parabolic
cylinder functions, for various special choices of the parameters «;, a, 8, £, ¢, d
and n,

In a series of papers, Gagnon and Winternitz (1988, 1989a) and Gagnon et al
(1989) classified symmetry reductions of the (3 + 1)-dimensional cubic and quintic
nonlinear Schrédinger equations

i, + Ay + et + dyfyl =0 2-2)

with ¢ and d constants, not both zero, which is the special case of (2.1) where
a; = a; = 0and 8, = B, = 0, using the classical Lie method. Subsequently,
Gagnon and Winternitz (1989b, ¢} considered symmetry reductions of the cylindrical
cubic and quintic nonlinear Schrédinger equations

ihy + Ypp + 27N, + P g + clUlt + dus|¥F = 0 @3)

and the spherical cubic and quintic nonlinear Schrddinger equations
ity + 1, + 2070, + 07 g9 + eyl + dy Y = 0. @4

In these studies, the authors obtained solutions of (2.2) and (2.3) expressible in terms
of the second and fourth Painlevé transcendents, elementary functions and Jacobi
elliptic functions and solutions of (2.4) expressible in terms of elementary and Jacobi
elliptic functions,

Thjiri (1983), Gagnon (1990) and Gagnon and Paré (1991) have discussed
symmetry reductions of the (24 1)-dimensional cubic nonlinear Schrédinger equation

i, + W + ¥y, + dppl =0 (2.5)

using the classical Lie method. In particular, Gagnon (1990) and Gagnon and
Paré (1991) obtained symmetry reductions which were not included in the earlier
classification for (2.2) and (2.3) (see also Giannini and Joseph 1991).

Symmetry reductions of the (1 4 1)-dimensional GNLS equation

i'd)t + wm:r: + (al + ia‘Z)(T»bhblz).r + (bl + in)w(ld)lz)r + CU”W’P + d¢|¢|2 =0
(2.6)

with @, a,, b;, by, ¢, d constants, have been discussed by Florjanczyk and Gagnon
(1990, 1992) using the classical Lie method and by Clarkson (1992) using the direct
method. Solutions were obtained expressible in terms of the second and fourth
Painlevé transcendents, Jacobi and Wejerstrass elliptic functions, Airy functions and
parabolic cylinder functions
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3. Symmetry reductions obtained by the direct method

In order to obtain symmetry reductions of (1.1), we write it as the system

iu.t+upp+p'1up—mzp‘zu+(a1+iaz)(uzv)P+(bl+ib2)u(uv)p+cu3v2+du2v =0
(3.1a)

—iv,+'vpp+p"lvp—nzp'zv+(a1—ia2)(uvz)p+(b1—ibz)v(uv)p+cu v 4duv? =0
(3.15)

where v is the (formal) complex conjugate of w. To apply the direct method to this
system of equations, following Clarkson (1992), we make the ansatz

u(p,t) = B(1) P(z) exp{i®(p, t}} (3:2a)
v(p,1) = B(1)Q(z) exp{~i®(p, 1} } (3.2b)

with z = pn(t) + ¢(t) and where 3(1), n(t), {(t) and ®(p,t) are (real) functions
to be determined (and we shall also assume that z, # 0, ie. n # 0). We remark
that as in the original application of the direct method in CX, it is sufficient to seek
solutions in the linear form (3.2) rather than use the more general ansatz

u(p,t) = Up,t, P(2))  v(pit)=V(p,1Q(2))

as can easily be shown. Substituting (3.2) into (3.1a) yields

Bn* P+ (ay +ia)) Pn(2P Q'+ PQP)+ (b1 +iby) 8n(P2Q'+ PQP') +¢6° P°Q?
+l(ioy - )8, + dPPQ+ |2 46 (o7 + 200, + 5 )| P

+[(ﬁ<1> +ﬁ¢pp+dﬁ) ﬁ(d) +<I)2+:)]P 0 (3.3)

with / = d/dz. In order that this is an ODE we require that ratios of coefficients
of powers and derivatives of P and @ be some function of z (to be determined).
We must also consider the equation produced by substituting our ansatz into (3.1b).
This is equivalent to interchanging P and @ in (3.3), and more significantly, letting
i — —i thus the real and imaginary parts of each coefficient of (3.3) have to be
considered separately. There are three cases to consider: (i) #(f) and n(t) both
constants; (i) B8%(f) = n(f), with a; = ¢, = d = 0; (i) B(¢) = n(t), with
gy =dy=by=by=c=0

3.1. B and 7n both consiants
Without loss of generality, we set n = 1 and 3 = 1, then (3.3} reduces to

P" 4 (a; +iay + by + i, }(P2Q' + PQP") + ¢P*Q* + [(ia, - a)®, + d|PlQ
+[ +1(2<I> + C)]P’

2
ofore)- G
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From the coefficient of P’ in (3.4) we have
1 .. .d¢ .
;+21‘I’p+la = Iy(z) +ilp(2) (3.5)

where I'j;(2) and I'(2) are (real) arbitrary functions to be determined. Without
loss of generality, we set ', = 0 (due to a scaling freedom in P), and so

14d
P(p,t) = —EP—&% + ¢y(t)

where ¢,(t) is a function to be determined. Next we eliminate p from the real part
of (3.5) (p = = — (), consequently { = {,, a constant, which we set equal to zero.
Thus (3.4) simplifies to

P + (b + ib,)(P*Q' + PQP') + (a; + ia;)(P*Q +2PQP')
3 ~2 -1 2~ (9% f_}"_) —
+cP2QY 4 27 P + dP2Q (df+32 P=0.

From the coefficient of P we see that d¢,/df must also be a constant and so
@y(t) = At + p, with A and p arbitrary constants. Hence we obtain the reduction

u(p,t) = P(z) exp{i( At -+ )} (3.6a)
v(p, 1) = Q(z) exp{—i(At + u)} (3.60)
with z = p, and where P and @ satisfy

P"+ (b +5,)(P’Q' + PQP") + (o, + ia)( PPQ' + 2PQP') + ¢ P*Q?

+dP2Q+ 27 P — (A +K%/ZH)P =0 (3.7a)
Q" + (b —6,)(Q*P' + PQQ’) + (2 —ia,)(Q*P' + 2PQQ’) + cP*Q?
+dPQ* + 27'Q' - (A + k¥/22)Q = 0. (3.7b)

Setting P(z) = R(z)exp{i©(2)} and Q{z) = R(z) exp{—i©(2)} in these equations
yields

R" — R(©")? 4 (2b; + 3a,)R?R — ¢, R*®" + 2z~ 'R’

+ R+ dRP - (A4 x2/zDR=0 (3-8a)
RO" +2R'©'+ 27RO’ + o, R*®' 4 (2b, + 3a,) R*R’ = 0. (3.80)
If a; = 0and a, = —2b,, then (3.80) can be integrated to give z R%(2)®'(2) = v,
with v an arbitrary constant, then eliminating ©’ in (3.8a) yields
R"+?'+2blR2R'+cRS+dR3-(A—%+§)R—zj—;=o. (3.9)

In section 4, we obtain solutions of this equation expressed in terms of the fourth
Painlevé equation (if b, = 0, A = —3d?/(16¢c) and &% = -113, with d # 0), Jacobi
elliptic functions (if b = d = A = 0 and &% = ).
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32 ) =n(t), with ¢;=a,=d=0
In this case, (1.1) reduces to
i, + uy, + 07w, — K207 2w 4 (by + iby)u([uf?), + culul* =0
(3.10)

and (3.3) reduces to
3 pr : 37 P2y’ . dn 2, %
PP (b ) (PQ 4 PP+ [Tt i (oG 4 20,7+ En)] P

: d 2
st (20,4180, n v )] o
G.11)

First, consider the coefficient of P’; comparing this with the coeflicient of P! shows
that, for (3.11) to be an ODE, then necessarily

. d 2 .
ipngs + T4 20,07 1G5 = 7Ty (2) 4 T(2)] (3.12)

where T'y(2) and I',(z) are functions to be determined. The real part of (3.12)
implies that { = 0 (I';; = 1/%), and using this in the imaginary part of (3.12) (set
T'p(z)} = 0, without loss of generality) then, since & is the only function which
depends on p, we obtain

®(p,1) = - ;l“ o(1) (3.13)

where ¢,(t) is to be determined. Substituting (3.13) into (3.11) and eliminating
p(= z/n) yields

P (b, + b)) (PQP + P2Qy 4+ eP?Q 4 2~1 P

1,|/1d 2 /dq\?| 1d¢, o idng)|,_
+{Ez[5a_zf (dt “ww Z apa(f="

1 ,11dn 2 [dy 1 de,
3° [ns a2 ‘;?T; (E) TRa ;’ = I5(2) (3.14a)
1 dn

where I'y;(#) and T';,(2) are functions to be determined. Since n depends only on
i, ther I';; = «, 2 constant (set v = 1, without loss of generality) and so

0(t) =12, (3.15)
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The left-hand side of (3.14a) implies that I'; (2) = 2% 4+ u — &2/ 2%, with § and p
constants. Substituting this and (3.15) into (3.14b) yields

1166 _ doy
e =0 —igg ~#=0

and consequently § = 1/16 and ¢y(¢) = ~ulnt.
Thus we have obtained the reduction

u(p,t) =tV P(2) exp{i(}2* — pIn 1)} (3.16a)
v(p,t) = 74 Q(z) exp{—i(}2* — pInt)) (3.16b)

with z = p/t!/2, and where P(z) and Q(=z) satisfy
P4 (b +ib}(PQP 4+ P’QY+ cPPQ* + 27 'P' + (k7 + di+ u—x?/2})P =0
{3.17a)

Q"+ (b ~ib)(PQQ + Q* PN+ cPPQ*+ 271Q" + (32 - Lit u~k?/2H)Q = 0.
(3.17)

Setting P(z)} = R(z)exp{i®©(2)} and Q(z) = R(z)exp{—i©(z)} in these equations
yields

R' - RO + 25, R’R' + z"'R' + cR* + (L2 4+ p~ k?/25)R =0 (3.182)
RO" +2R'® + 2 'RO' 4+ 20,RPR'+ 1R =0 (3.18b)

If b, = 0, then (3.18b) can be integrated to give z R?(2)[©'(z) + iz} = v, with ~
an arbitrary constant, then eliminating ©' in (3.18a) yields

R 3z ?
R”+—;+2b,RZR’+cRS+(-—€4~+u "‘)R+ 5 %-_-o. (3.19)

3.8)=n(t)witha;, =a;=by=b,=e=0
In this case, (1.1) reduces to

i, +u,, + p 7, — k¥ Fut culuff =0 (3.20)
which is the special case of the (2 4 1)-dimensional cubic nonlinear Schr&dinger

equation (2.5) when v¥(z,y,t) = u(p,t)exp{ic8}, with p = (z* + y?)}/? and
6 = tan"}(y/z), and (3.3) reduces to

3 o 3p2 n? dC ‘
n°P" + dp* P*Q + —+ p+2n<1> +57)| P

(I) 2
+ [ ("p" + +nd>,,,,) —n(<1>,+<1>3,+—})] P=0. (321
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We remark that this equation has a similar form to (3.11), in particular, the coefficient
of P is only changed by a factor of 2 in the second term; however, significantly, the
coefficient of P’ has only an imaginary part. This means that the form for ®(p,t)
will be unchanged from section 3.2, and is given by (3.13), but there is one less
equation determining 7(¢) which turns out to be crucial.

Proceeding in an analogous way to the previous section, we find that ¢ must again
be a constant and, as before, we set it to zero. Eliminating p(= 2/7) in (3.21) yields

P 1 dZp 1 fdnp\? k[ 1d¢
t 2 el el A B S z2_ ™ el ot '} =
Pl+dPQ+ 3 +{[Wdt2 2n5(dt) roa ‘(nz dt) P=0

(3.22)
The coefficients of z2 P and P are constants, say § and p, respectively, thus
Ldz_’?“}_(d_’?)z] —s - _ 2 (3.23)
405 4tz 2n%\ df di
There are three sets canonical solutions for these equations:
() =1/t ¢y(t) = ~plnt (3.24a)
n(d) =1/t @y(1) = pft (3.246}
n(t)=1/(F+ DV ¢y(t) = ~ptan~'t (3:24¢)
for § = &, 6 = 0 and 6§ = —}, respectively. Hence we obtain the following three
reductions:
u(p,t) = t7Y2P(2) exp{i(}2? — ulnt)} (3.25a)
v(p,t) = tY2Q(2) exp{~i(}z* — uInt)} (3.25b)
with z = p/t}/%;
u(p,1) = 171 P(2) expli( 4% + ) /1) (3.260)
v(p,t) = t71Q(z) exp{~i(30% + 1)/ 1} (3.26b)

with 2 = p/t; and

u(p,t) = (2 4+ 1)"V2P(z) exp {i [“(—tufz_-:—ﬁ - ptan~? z] } (3.27a)

2

v(p,t) = (24 1)"Y2Q(2) exp {—i [4(;—_:_13 — ptan! t]} (3.276)

with z = p/(t? + 1)}/2. For each reduction P(z) and Q(=z) satisfy
P'+ 27 P 4+ dP2Q + (622 + u -2/} )P =0 (3.28q)
Q' +z7'Q +dPQ* + (622 + u - k*/2)Q =0 (3.28)
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with § = 1, § = 0 and § = -1, respectively. Setting P(2} = R(z) exp{i®(z)} and
Q(z) = R(z)exp{—i©(z}} in these equations vields

R'— ROV + 2 'R+ dRP+ (62 + p -k /2H)R=0  (3.2%)
RO" +2R'®' 4+ z"1RO' = 0. (3.295)

Equation (3.29h) can be integrated to give zR%(2)©'(2) = -+, with -y an arbitrary
constant, then eliminating ©/ in (3.292) yields

iy B 3 2 K2 v
In section 4, we obtain solutions of this equation expressed in terms of the second
Painlevé equation (if 4 # 0, § = 0 and «? = §), and elliptic functions (if p = 0,
§=0and x? = }).

Hence we have shown that (3.20}, a special case of the (2 + 1)-dimensional cubic
nonlinear Schrodinger equation (2.5), has two additional symmetry reductions, ie.
(3.26) and (3.27), in comparison with (3.10), which has a quintic nonlinearity. These
additional symmetry reductions are generated by the vector field

v = ptd, + (12 + 6)8, — (t + ip — Lip*)ud, — (t - iy + Lip*)va, (3.31)

with & = 0 for (3.26) and & = } for (3.27). In the special case § = p = 0, the vector
field (3.31) reduces to

v = ptd, + 128, — (t — lip*)ud, — (t + Lip*)vd, (3.32)

which represents a conformal point symmetry and the associated one-parameter
transformation group is

Ly A
P N _ lep
=10 G = u(l - et) exp{4——--——(1 — et)} (3.33a)
st . iep?
t= 1= v = U(I—Gi) exp{—m} (3.33b)

which is the Talanov lens transformation (Talanov 1970). This transformation can be
interpreted as the image of a field @(3,7) produced by a thin optical lens with focal
length 1/ec.

4. Painlevé analysis of ODES resulting from the GCNLS equation

In this section we apply Painlevé analysis to the following equations

R‘ 5 mz ,72
R”-I--;--l—dR +(522+M—;')R-—;i-}-2—5=0 (4.1)
z T 6t THT 2 AR~ R T '

R 2~ h 2 2
R”+?+2b1R2R’+cRS+dR3—(A——;;E-F-;z-)R—#:O. @.3)
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4.1. Equation (4.1)
Making the transformation R(z) = w!/2(z) in (4.1) yields

' 2
ww' — %(w’)2+ 1”; 4+ 2dw? 4+ 2 (5z2 +u—- %) w?— T =0. 4.4)
It is easily shown using the algorithm of Ablowitz et a/ (1980) that this is of Painlevé
type if and only if 6§ = 0 and 2 = },, ie. for the special case of (4.4) given by

ww” (w')2 + 2dw® +2 (,u - 9_,112) w? — %’-’- 0. (4.5)

Next we transform (4.5) into so-called standard form to allow us to find its
solutions in terms of the classification of Painlevé and Gambier (Ince 1956). Following
the procedure described by Ince, we make the transformation

w(z) = x(2)W(Z} Z(z) = thyz*? x(z) = ;flu -2/3 “5)
where 1, is a constant, which yields

3242 1 9u
T W2 ¢

Ew 1 fawy? )
az7 = W (dZ) +AWE+

There are four cases to consider:

Case 4.1(i). If p = v = 0 then (4.7) reduces to equation (XVIII) in chapter 14 of
Ince (1956). Its first integral is

(dW/dZ)? = 4W (W, + W?)

where W), is the constant of integration, which is solvable in terms of elliptic functions
(if W, # 0), or elementary functions (if W, = Q).

Case 4.1(i)). If p =0and v # O then we set o, = 3i(vd)'/3, and obtain a special
case of equation (XXXIII) in chapter 14 of Ince (1956). Its first integral is

(AW/dZ)? = 4W> 4 4W, W + 1

where W, is the constant of integration, which is also solvable in terms of elliptic
functions (if W, # 0), or elementary functions (if W, = 0).

Case 4.1(i55). If p 3 0 and v = 0, then we set 45 = (—2x)/> and obtain equation
(XX) in chapter 14 of Ince (1956)

2 2
w1 (dw) AW £ 2ZW,

4z T 2W \ dZ
Setting W = Y? yields

Y .,

Sz =2+ 2Y

which is a special case of the second Painlevé equation (Py).
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Case 41(iv). Finally, with y # 0 and v # 0, we set ¢y = (§u)/?, and after
rescaling W we obtain equation (XXXIV) in chapter 14 of Ince (1956)

2
1
2— —— ——
) + 4aW ZW W

2w 1 {dW
dzZ2 T 2W \ dZ

with o = +3ivd /4mu. This equation has the solution

1 /av
L eddS /a1l
W‘za(dz+‘ "'ZZ)

where V( Z) satisfies Pn
d?v/fdz* =2V34+ 2V -2a - L.
For further details of exact solutions of (4.7) see Gagnon and Winternitz (1985c).

4.2. Equation (4.2)
Making the transformation R(z) = w'/%(z) in (4.2) yields

3z2
64

' 2 2
ww" - 1(w')? 4 _____w:u +2b whw' 4 2w’ 42 ( +u- %) w’ fyw— %35‘ =0.
“.8)

Using the algorithm of Ablowitz et al (1980), it is easily shown that this equation is
not of Painlevé type (if either b, 3 0 or ¢ # 0).

4.3. Eguation (4.3)
Making the transformation R(z) = w/2(z) in (4.3) yields

ww”—-—%-(w’)z+w—;-u-r-+2blw2w’+2cw4+2dw3+2 ()\ - 32'277 + :—Z) wz—ziz = (,
4.9)

‘There are three cases to consider
Case 4.3(i). by % 0. In this case it is easily shown that (4.9) is not of Painlevé type.

Case 4.3(ii). b; = 0and c # 0. In this case it is casily shown that (4.9) is of Painlevé
type if and only if

—

—_ 3d2 2 .
= T 16ec T

ie. for the special case given by

W Lt Y s s4.0f 38 _ 2y __1.__) 2_ 27
ww” — 3(w)* + - + 2cw® 4 2dw +2( T o +16z2 w = {,
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As for (4.5), we can transform (4.10) into standard form and thus solve it.
If d # 0, then making the transformation

1/4
w(z) = x(2)W(Z) Z(z) = ( 3d? ) S1/2

4(—ec)
33d2 1/4 _

)= (wctep) @1
to (4.10) yields the fourth Painlevé equation (Pp,)

EW 1 (dW\ | 3, , R 8

7T T (dz) + W H4ZW? +2W(Z2 — o) + 3
with

_16b,y(—c)}/? _ 222
=3 = Tom
If d = 0, then making the transformation

w(z) =z 2W(Z)  Z(z) =4(-}c)? 212 (4.12)
to (4.10) yields

EwW 1 (dW\? | 3 . B

aZZ ~ W (dZ) W -aW 1)

with o = byy/e and 8 = —342/(2¢), which is solvable in terms of Jacobian elliptic
functions.

We remark that Gagnon and Paré (1990) obtained approximate solutions of (4.9)
with b; = 0 using a variationa] technique and compared the results with numerical
simulations.

Case 4.3(iii). b, = 0 and ¢ = 0. In this case it is easily shown that (4.9) is of
Painlevé type if and only if d = 0, in when it simplifies to

v 1r,.,12 ww' _2527 _"EE 2_%:7_2___
ww" — 3(w')* + » +2 (A =t - = 0. @414
Making the transformation w(z) = z~ly(z), 2 = 2)}/2 2, yields the Pinney equation

&2y 1, by | i-# ~

dz? ~ (—Z + 3A/2g + xz YT 4 s’ (4.15)
The general solution of (4.15) is given by

2 2\ 1/2

y(x) = (yf + 74;'2) (4.16)
where y;(«) and y,(«) are linearly independent solutions of the Whittaker equation

d’y 1, by 1=«

dz? ~ (_Z ta T T Y=o (4.172)
satisfying

dy, dy, _
N2 -t =1 (4.17b)

(Pinney 1950).
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5. Coupled, cylindrical nonlinear Schridinger equation

In this section we discuss symmetry reductions of the (2 + 1)-dimensional coupled
nonlinear Schrddinger equations in cylindrical coordinates

h!bl,t + 1I)l,pp + P_1¢1,p + p_2¢1,99 + (C\!!’!,bllz + ﬁl’l»bZIz)"’bl =0 (5.1(1)
iy +,,, + P, + 07 P 00 + (Y12 + S|y P)e, = 0 (5.1b)

with o, 3, v and § arbitrary constants (not all zero). Equation (5.1) is of particular
interest in the field of transverse effects in nonlinear optics (cf Abraham and Firth
1990).

The application of the direct method to equations (5.1) is very similar to that
for (1.1) in section 3, and so we omit details. The method yields the following four
symmetry reductions

Erxample 5.1. The time-translational symmetry reduction
¥1(p,8,1) = P,(2) exp{i(x6 + At)} (5.2a)
¥i(p,0,1) = Pp(2) exp{i(x0 + At}} (5.2b)
with z = p, and where P;(z) and P;(z) satisfy
P+ 27 P = (A w2 P + (el AR+ BIRP =0 (53a)
Py 427 P = (A + k¥ [P+ (1| + 6| R ) Py = 0. (5-36)

It can be shown that these equations are not of Painlevé-type (unless o= 8 = v =
§=0).

Example 5.2. The scaling (or dilational) symmetry reduction
¥i(p,8,1) = t™V2P(2) exp{i[x6 + (1% — pIn1)]} (5.4a)
$a(p,0,1) = "2 Py(z) explilsd + (}2* - p1n 1))} (5.4b)
with z = p/t1/2.
Example 5.3. The conformal point symmetry reduction
¥i(p,8,1) =t Ay(2) exp{il8 + (107 + p)/1]} (5.50)
(P, 8,1) = t7' Py(z) explilx8 + (07 + 1) /1]} (5-5b)

with z = p/t.
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Example 5.4. The generalized conformal point symmetry reduction

Pi(p,0,t) = (12 + 1)~ V2P (2) exp {i [me + 4“2’%5 — ptan™? z] } (5.6a)
a(p:8,1) = (£ + 1)V Py(x) exp {i [n@ + 4_(15% - t]} (5.60)

with z = p/(#* + 1)V/2,
For the reduction in examples 5.2, 5.3 and 5.4, P;(z) and P,(=z) satisfy

P+ 271 + (62 + - k2 [Z*) P+ (o| PP + BIBH P = 0 (3.7a)
PB4 z71P 4+ (6224 p— k¥ ) P+ (7| AP + 8RB P =0 (5.7b)
with § = i, § = 0 and § = —1, respectively. It can be shown that these equations

are not of Painlevé-type (unless ¢ = 8=~y = § = Q).
Gagnon (1992) has recently discussed the (classical) Lie symmetries of the special
case of

i, + W1+ 0701, F 07 e + ol P+ (14 Rl =0 (5.8a)
i s+ Po,, + P s, 2y 00 + oT(1+ B2+ (U, =0 (5.80)

where ¢ = +1, and obtained some exact and approximate solutions. In particular,
Gagnon (1992) studied exact approximate solutions arising from the generalized
conformal point symmetry reduction (5.6) by solving approximately (5.7) with o =
6 ==+1 and 8 = v = (1 + h), where h is a non-zero real parameter, using
variational techniques. These approximate solutions were expressed in terms of
Laguerre-Gauss polynomials and generalized earlier results due to Marburger and
Felber (1978).

6. The n-dimensional nonlinear Schridinger equation

In section 3 we obtained a conformal point symmetry reduction of (3.1) in the form
u(p,) = 1 P(z) exp{i(ep? + 1) /t} (6.12)
v(p1) = 1P Q(z) exp{-i(ap® + u}/1} {6.15)

with z = p/t, and where « and 3 are specified constants and u is an arbitrary
constant. Here, we investigate whether analogous reductions arise for the (n 4 1)-
dimensional nonlinear Schrodinger equation with radial symmetry

iu, + Viu + clu|*u=0 (6.2a)
where
82 n-1208
Viz—+ -—. 6.2b
ap2 ap ( )
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This equation arises in various physical context describing the slowly varying envelope
wave train in conservative dispersive systems. It is a generic equation describing the
slowly varying envelope wave train in conservative dispersive systems. For ¢ < 0 and
o <2{(n=-2),iff n >2o0ro < oo,if n <2, then it has solitary wave solutions which
are stable for o < 2/n and for ¢ > 2/n, there exist solutions of (6.2) which blow up
at a finite time (cf LeMesurier ef o/ 1988a, Rasmussen and Rypdal 1986). Reductions
of (6.2) have been considered by Gagnon and Winternitz (1990) in cylindrical (n = 1)
and spherical (n = 2) coordinates.
As in section 3, we rewrite (6.1) as the system

iu, + V2u + cu(uv)° =0 (6.3a)
—iv, + V20 + cv(uv)? = 0. (6.3b)

Substituting (6.1) into (6.6), multiplying through by t2-# exp{-i(ep® + u)/t} and
eliminating p vields

P4 (do— DitzP' +(n— 1)z P + [(a - 40®)t*22 + u + i(2an + B)t] P

+ ct2eFH) p(PQ)° = 0. (6.42)
Q" — (4o~ DitzQ' + (n — DNz7'Q + [a(1 — 41222 + p + i(2an + B)1]Q
+ ctePHDQPQ)? = 0. (6.4b)

In order for these to be ODES, then necessarily

o =

B

cB+1=0 2an+8=0. (6.5)

Hence we see that (6.3) possesses a symmetry reduction of the form (6.1) with & = %
and 8 = —1/c, provided that

on =2 6.6)

which is the so-called critical dimension, and where P(z)} and Q(z) satisfy

P+ (% - 1) % + P+ cP(PQ)° = 0. (6.72)
Q" + (i- - 1) 7’ + uQ + cQ(PQ)* =0. (6.7b)

It is easily shown that these equations are not of Painlevé type.
Similarly it can be shown that (6.3) possesses the generalized conformal point
symmetry reduction

2
u(p,t) = (2 + 1)~V P(z) exp {i [m% — ptan™! t] } (6.82)
v(p,t) = (2 + D)"Y Q(2) exp {—i [Z(tsztl) - ;.etan“lt]} (6.8b)

with z = p/(t% + 1)1/2, if and only (6.6) holds. It is easily shown that these equations
are not of Painlevé type.
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We remark that for all n and o, (6.3) also possesses the time-translational

symmetry reduction
u(p,t) = P(z)exp(iut)
v(p,t) = Q(z) exp(-iut)
where z = p and P(z) and Q(z) satisfy
P'4(n-1z"1P +[u—12|P+ cP(PQ)" =0
Q"+ (n=1z7'Q" + [k - §271Q + cQ(PQ)7 = 0
and the scaling (or dilational) symmetry reduction
u(p, 1) = 1Y@ P(z) exp{i(}2* — I 1)}
v(p, 1) = V@) Q(z) exp{~i( 12> ~ uln?))
where z = p/t"/? and P(z) and Q(z) satisfy

P4 (n-Dz'P —[u - §281P+ cP(PQ)° =0

Q" +(n—-1z7'Q — [u- £271Q + cQ(PQ)’ = 0.

It is easily shown that (6.10) and (6.12) are not of Painlevé type.

(6.9a)
(6.95)

(6.10a)
(6.106)

(6.11a)

(6.11b)

(6.122)
(6.125)

Hence we have demonstrated that the {n + 1}-dimensional nonlinear Schrédinger
equation (6.2} can have symmetry reductions associated with a conformal point

symmetry only in the case of the critical dimension (6.6).
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