
Symmetry reductions of a generalized, cylindrical nonlinear Schrodinger equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 133

(http://iopscience.iop.org/0305-4470/26/1/015)

Download details:

IP Address: 171.66.16.62

The article was downloaded on 01/06/2010 at 18:35

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/1
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phyg A: Math. Gen. 26 (1993) 13S150. Printed in the UK 
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Received 27 January 1992 in final form 14 September 1992 

AhstracL In this paper, symmetry reductions for a generalized, cylindrical nonlinear 
Schridinger equation are presenled. nese  are obtained using an =tension of the direct 
merhod, originally developed by Clarkson and Kruskal, which involves no p u p  theoretic 
techniques. 

1. Introduction 

In this paper we discuss symmetry reductions of a generalized, cylindrical nonlinear 
Schriidinger (GCNLS) equation 

with n, a,, a2, b,, bz, e and d constants, not all zero. This equation is the special 
case of the ( 2  + 1)dimensional generalized nonlinear Schrtidinger equation 

iGt + k= + $gv + ((11 + iaz)  . v($1$t2) 
+ (PI + ipd ' $V(l$IZ) + C$I$l4 + d$111I2 

= O  (1.2) 

with al, az, PI, pz constant vectors, c, d constants and where Vq5 = ( q 5 2 , q 5 y ) ,  
which arises in quantum field theory (Clarkson and l%sZyriski 1990, Dixon and 
"ki 1989, TbzyriSki and Dixon 1989). Setting $ (z ,y , t )  = ~(p, t )exp(in@),  
with p = (2 + yz)'/z and e = tan-'(y/x), in (1.2) yields the GCNLS equation (1.1). 

The ocm equation (1.1) occurs, in some form, in a wide variety of physical 
applications: in wave propagation in nonlinear and dispersive media, in quantum 
field theory, the timedependent Landau-Ginzberg model of phase transitions and 
propagations of slowly varying electromagnetic wave envelopes in plasma, in the 
theory of weakly nonlinear dispersive water waves, and in the nonlinear dynamics of 
superfluid films for which U is the condensate wavefunction, related to the film 
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thickness and to the superfluid velocity. 
cylindrical nonlinear SchrMinger (m) equation 

P A  Clarkson and S Hood 

Of particular interest is the so-called 

iu, + upp + p-*up f lul’u = o (1.3) 

which plays an important role in the theory of light wave envelopes in dispersive 
media with nonlinear refractive index (Hasegawa 1990). Furthermore, the mu 
equation (1.3) is the so-called ‘equation of self-focusing’. It is known that there exist 
solutions of (1.3) which have a singularity in finite time and there has been much 
interest in the determination of the structure of this singularity (cf Ablowitz and 
Segur 1979, Landmanel al 1988, 1991, LeMesurierer af 198&, b, Malkin and Shapiro 
1991, Rasmussen and Rypdal 1986, Rypdal et a1 1985, Rypdal and Rasmussen 1986, 
Smirnov and Fraiman 1991, Wood 1984, Zakharov and Synath 1976). 

Specifically, optical solitons (or wave packets), a manifestation of this nonlinearity, 
lind application in distortionless signal transmission along optical fibres. Such 
applications occur in long-distance data transmission (- loo00 km), removing the 
need for expensive en-route ‘repeater’ equipment, e.g., in telecommunications, and 
more recently in the field of high-speed ultra-low-noise data transmission. This latter 
application makes use of a property known as ’squeezing’: data are encoded on one 
of a pair of conjugate quantum obselvables in which noise is naturally reduced, at 
the expense of increased, but inconsequential, noise in the other mriable (Abram and 
Padjen 1991). 

The classical method for finding symmetry reductions of PDES is the Lie group 
method of infinitesimal transformations (cf Bluman and Cole 1974, Bluman and 
Kumei 1989, Hill 1982, Olver 1986), for which symbolic manipulation programmes 
have been developed (a survey of the different packages presently available is given 
by Champagne et ai 1991). 

There have been several generalizations of the classical Lie method for symmetry 
reductions, in particular the non-classical method of group-invariant solutions, in the 
folllowing referred to as the non-classical method, due to Bluman and Cole (1969). 

Clarkson and Kruskal (1989), hereafter referred to as CK, developed a direct 
and algorithmic method for finding symmetry reductions (in the following referred 
to as the ‘direct method’) which is used to obtain previously unknown reductions 
of the Boussinesq equation. Levi and Winternitz (1989) subsequently gave a group 
theoretical explanation of these results by showing that all the new reductions of the 
Boussinesq equation could also be obtained using the non-classical method of Bluman 
and Cole (1969). The novel characteristic about the direct method is that it involves 
no use of group theory. It has been employed to obtain new symmetry reductions and 
exact solutions for several physically significant PDES (Clarkson 1989a, b, 1990, 1992, 
Clarkson and Hood 1992, Clarkson and Wmternitz 1991, Lou 1990a,b, 1991, Lou 
and Ni 1991, Lou et a1 1991, Nucci and Clarkson 1992), which represent significant 
progress. 

There is much current interest in the determination of symmetry reductions of 
PDES which reduce the equations to ODES. One then checks if the resulting ODE is 
of Painlev6 lype (i.e. whether its solutions have no movable singularities other than 
poles). It appears to be the case that whenever the ODE is of Painlev6 type then it can 
be solved explicitly, leading to exact solutions to the original equation. Conversely, 
if the resulting ODE is not of Painlev6 lype, then often one is unable to solve it 
explicitly. 
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In this paper we apply the direct method to the GCNLF equation (1.1) and obtain 
some new reductions for this equation and consequently also for (1.2). 

2. Physical and mathematical background 

In the first part of this section we give a brief interpretation of the CCNLS equation 
(Ll), in the context of ‘solitons’t in optical fibres; the second part consists of a short 
discussion of mathematical properties of the equation. 

21. Physical background 
We first consider rhe CNLF equation (1.3), which is the model equation describing 
envelope soliton propagation. Here t represents the ‘distance’ along the direction 
of propagation, and p ,  the ‘time’ in the group velocity frame. The second and 
third terms originate from the dispersion of the group velocity, that is the group 
velocity is dependent on the wavelength, producing dispersion of the wave. The 
nonlinearity is produced by the dependence of the wavelength on the intensity, U of 
the wave. This is due to the ‘Kerr effect’ that is the dependence of the refractive 
index of a dialectric material on the (square of the modulus of the) electric field 
component of the electromagnetic field U. In fact, the refractive index n, is given hy 
n = no(w) + n,lEIZ, where w is the angular frequency of the light, E is the electric 
field and n2 is known as the Xerr coefficient’ (Hasegawa 1990). In order to model 
M h e r  physical effects, more terms may be added to (1.3). The fourth term in (l.l), 
namely ( a l  + iaz)( IuI*u),, models nonlinear dispersion generated by the dependence 
on wavelength of the Kerr coefficient 

One may also model dissipation originating from Raman scattering in the fibre: 
if a sample is illuminated by monochromatic light, and the scattered light observed, 
the observed spectrum consists of a strong line and weaker lines on either side. 
These lines are interpreted as a manifestation of molecular vibrational transitions, Le. 
the energy of the emitted photon may be altered from that of the incident photon 
because of energy level transitions of molecules in the sample (J2lliot and Dawber 
1979, Ashcroft and Mermin 1976). 

22. Mathematical background 
Symmeny reductions of the [3 4- 1)dimensional generalized nonlinear Schrodinger 
(GNLS) equation 

i+t + A+ + (al + 4) . V(d4d4z) + (PI  + $32) W(l$lz) + c$1@I4 + d+l+l* = 0 
(2.1) 

with a,, aZ, PI, pz constant vectors, c, d constants and where A+ = + z z f + y y + q 5 r r  
and V4 = ( q 5 = , + v , + x )  have been obtained by Clarkson and Tl~~zyriSki (1990) and 
Clarkson (1992) who looked for plane wave reductions of (2.1), i.e. reductions of the 
form 

+(z,Y,z,t)  = P(t)R(E)exp{i[@(E) t + ( ~ , ~ , z , t ) l l  

t Strictly, the term soliton refen only 10 ahlions of integrable equations. For wnvenience, we relax the 
definition SI as to include solutions of non-integrable equations. 
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with = ( n l r + n z y + n 3 r ) q ( t )  and where p(t ) ,  q ( t )  and ~ ( Z , V , Z , ~ )  are specified 
functions and n = (nl,n2,n3) is a constant unit vector. In these reductions, R(E) 
and @ ( E )  were expressed in terms of the second and fourth Paiilev6 transcendents 
(cf Ince 1956), Jacobi and Weierstrass elliptic functions, Airy functions and parabolic 
cylinder functions, for various special choices of the parameters air azr p,, p,, c, d 
and n. 

In a series of papers, Gagnon and Wmtemitz (1988, 1989a) and Gagnon et a1 
(1989) classified symmetry reductions of the (3 t 1)dimensional cubic and quintic 
nonlinear Schriidinger equations 

P A  Clarkson and S Hood 

iGt + A+ + c+I+l4 + WWI2 = 0 (2.2) 

with c and d constants, not both zero, which is the special case of (21) where 
ai = aZ 0 and pI = pz E 0, using the classical Lie method. Subsequently, 
Gagnon and Wmternitz (1989b, c) considered symmetry reductions of the cylindrical 
cubic and quintic nonlinear Schrodinger equations 

+ +,, + P - ’ + ~  + P-’+ee + c+I+14 + d+I+12 = 0 (2.3) 

and the spherical cubic and quintic nonlinear Schrodinger equations 

iGt + +,, + 2~-’+ ,  + p-’+se + c+1+I4 t d+l+12 = 0. (24) 

In these studies, the authors obtained solutions of (22) and (2.3) expressible in terms 
of the secund and fourth Painlev6 transcendents, elementary functions and Jacobi 
elliptic functions and solutions of (24) expressible in terms of elementary and Jacobi 
elliptic functions. 

’Ihjiri (1983), Gagnon (1990) and Gagnon and Park (1991) have discussed 
symmetry reductions of the (2+ I)-dimensional cubic nonlinear Schrodinger equation 

i+$ + QZz t +,,, + d+l+I2 = 0 (2.5) 

using the classical Lie method. In particular, Gagnon (1990) and Gagnon and 
Par6 (1991) obtained symmetry reductions which were not included in the earlier 
classification for (2.2) and (23) (see also Giannini and Joseph 1991). 

Symmetry reductions of the (1 t I)-dimensional GNU equation 

iGt + kZ + (a1 t iaz)(+l+12), + ( b ,  t ibz)G(I+Iz), + c1Llrl,14+ d+l+l2 = 0 

(2.6) 

with al. a,, b,, b,, c, d constants, have been discussed by Florja6czyk and Gagnon 
(1990, 1992) using the classical Lie method and by Clarkson (1992) using the direct 
method. Solutions were obtained expressible in terms of the second and fourth 
Painlev6 transcendents, Jacobi and Weierstrass elliptic functions, Airy functions and 
parabolic cylinder functions 



symmetry reductions of a W N L S  qualion 

3. Symmetry reductions obtained by the direct method 

In order to obtain symmetry reductions of (l . l) ,  we write it as the system 

iut+ U p p  +p-1up-nzp-2u+(a,+ia2)( u 2 ~ ) , + ( b i + i b 2 ) u ( ~ v ) p + c ~ 3 ~ 2 + d u 2 v  = 0 

( 3 . 1 ~ )  
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-iv,+v,,+p-’v,-n 2 p -2 v+(ai-iaz)(uvZ),+(bl-ib2)~(~v)p+~~2v3+d~v2 = 0 

(3.16) 

where U is the (formal) complex conjugate of U. lb apply the direct method to this 
system of equations, following Clarkson (1992), we make the ansatz 

with z = p q ( t )  + C(t) and where P( t ) ,  q ( t ) ,  C ( t )  and @ ( p , t )  are (real) functions 
to be determined (and we shall also assume that zI $ 0, ie. q $ 0). We remark 
that as in the original application of the direct method in a, it is sufficient to seek 
solutions in the linear form (3.2) rather than use the more general ansatz 

u ( p , t )  = U ( p , t , P ( z ) )  v ( p , t )  = V(p, t ,Q(z))  

as can easily be shown. Substituting (3.2) into ( 3 . 1 ~ )  yields 

PqzP”+ (a, +ia2)P30(2P2 Q’+ PQ P‘) t (b, + ibz)p3q( P2 Q’+ PQ P‘) t cP5 P3Q2 

with ’ E d/dz. In order that this is an ODE we require that ratios of coefficients 
of powers and derivatives of P and Q be some function of z (to be determined). 
We must also consider the equation produced by substituting our ansatz into (3.lb). 
This is equivalent to interchanging P and Q in (3.3), and more significantly, letting 
i + -i; thus the real and imaginary parts of each coefficient of (3.3) have to be 
considered separately. There are three cases to consider: (i) p( t )  and q ( t )  both 
constants; (2) p2(t )  = q ( t ) ,  with al = a2 = d = 0; (iii) p(t)  = q(t) ,  with 
a,  = a,  = b, = b, = c = 0. 

3.1. P and q both constants 

Without loss of generality, we set q = 1 and p = 1, then (3.3) reduces to 

P ” + ( a l + i a 2 +  bl t i b 2 ) ( P 2 Q ’ +  P Q P ’ ) + c P 3 Q 2 + [ ( i a l  - a , ) @ , , + d ] P 2 Q  
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From the coefficient of P' in (3.4) we have 
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1 dS - t 2iaP t i- = rll(z) + ir lz(z) 
P dt (3.5) 

where rll(z) and r lz(z)  are (real) arbitrary functions to be determined. Without 
loss of generality, we set rIz = 0 (due to a scaling freedom in P), and so 

where &(t) is a function to be determined. Next we eliminate p from the real part 
of (3.5) (p = z - 0, consequently < = CO, a constant, which we set equal to zero. 

l="+(bl+ibz)(PZQ'+ PQP') t (al +ia,)(P2Q'+2PQP')  

Thus (3.4) simplifies to 

From the coefficient of P we see that d+,/dt must also be a constant and so 
&(t) = A t  + p, with X and p arbitrary constants. Hence we obtain the reduction 

with z = p, and where P and Q satisfy 

P" + ( b ,  + ibz)(PZQ' + PQP')  + (al  + iaz)( P'Q' + 2 P Q P ' )  + cP3Qz 
+ d P 2 Q  + z-'P' - ( A  t n Z / z 2 ) P  = 0 (3.7~) 

Q"+(b,  -ibz)(QzP'+ PQQ') +(a l  - iaz)(QZP'+2PQQ')  + c P 2 Q 3  
+ d P Q Z  t z-'Q' - ( A  + .'/z')Q = 0. (3.76) 

Setting P(z) = R(z)exp{iO(z)} and Q(z) = R(z)exp{-iO(z)} in theseequations 
yields 

R" - R(0')' f (2b1 + 3al)RZR' - a,R30' + z-'R' 

+cRS + dR3- ( A t  nZ/zZ)R = 0 (3.W 

R e " +  2R'O ' t  z-'RO'+ a l R 3 0 ' +  (2bz + 3a,)R2R' = 0. (3.86) 

If al  = 0 and az = -;b2, then (3.86) can be integrated to give zR2(z)O'(z) = 7 ,  
with y an arbitrary constant, then eliminating 0' in (3.&) yields 

R"+ - +2b,RZR'+ cRs + dR'- ( X - - 2i: t - ::) R -  - zZR3 yz =o. (3.9) 
R' 
2 

In section 4, we obtain solutions of this equation expressed in terms of the fourth 
Painlev6 equation (if b, = 0, X = -3dZ/(16c) and ) E ~  = &, with d # 0), Jacobi 
elliptic functions (if b, = d = X = 0 and n2 = &), 
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3.2 @'(a) = q(t), with al = a, = d = 0 

In this case, (1.1) reduces to 

int + upp + p-'up - n2p-'u + ( 6 ,  + ib2)u(I@)p + ~ ~ 1 1 ~ 1 1 ~  = o 
(3.10) 

and (3.3) reduces to 

(3.11) 

Fht, consider the coefficient of P'; comparing this with the coefficient of P" shows 
that, for (3.11) to be an ODE, then necessarily 

where r2,(z) and r,(z) are functions to be determined. The real part of (3.12) 
implies that C E 0 (rzl E l/z),  and using this in the imaginary part of (3.12) (set 
r,(z) 0, without loss of generality) then, since @ is the only function which 
depends on p, we obtain 

(3.13) 

where &(t) is to be determined. Substituting (3.13) into (3.11) and eliminating 
p(= r / v )  yields 

Separating the real and imaginaly parts of the coefficient of P in this gives 

(3.14) 

where r31(z) and r,(z) are functions to be determined. Since q depends only on 
t, then r3' = 7 ,  a constant (set 7 = 1, without loss of generality) and so 

q ( t )  = t-1'2. (3.15) 
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The left-hand side of (3.14~) implies that rSl(z) = 62' + p - K , / x ' ,  with 6 and p 
constants. Substituting this and (3.15) into (3.14b) yields 

P A  Clarkson and S Hood 

-- - t - - p = o  WLl 
dt - 0  1 - 166 

161 

and consequently 6 = 1/16 and & ( t )  = -pint. 
Thus we have obtained the reduction 

u(p,t)  = t-lI4p( z )  exp{i(Qr' - p ~n t ) )  (3.16~) 

v(p,t) = t-1/4Q(z)exp{-i(~z2 -pint)} (3.166) 

with z = p/t112, and where P ( z )  and Q ( z )  satisfy 

P"+ (b, +ib,)(PQP'+ P'Q') + cP3Q2 f z-IP' + ( i z z  + ii+ p - K'/z ' )P = 0 
(3.17~) 

Q"+ (b,-ib,)(PQQ'+ Q'P') f cP2Q3f z-'Q'f (&z'- a i + p - K 2 / z  2 ) Q  = 0. 

(3.176) 

Setting P ( z )  = R(z)exp{i@(z)} and Q ( z )  = R(z)exp{-iO(z)} in theseequations 
yields 

R" - R(0')' + 2b,RzR'+ z-'R' + cRS + (kz' f p - 6 ' / z 2 ) R  = 0 (3.18~) 

Re" + 2R'O' + z-'R@' + 26, RZ R' + a R = 0 (3.1%) 

If b2 = 0, then (3.1%) can be integrated to give z R 2 ( z ) [ 0 ' ( z )  + i z ]  = 7, with y 
an arbitrary constant, then eliminating 0' in (3.18~) yields 

3.3. p( t )  = q(t)  wifh al  = a2 = b, = b, = c = 0 

In this case, (1.1) reduces to 

(3.20) 

which is the special case of the (2 + 1)dimensional cubic nonlinear Schrodinger 
equation (2.5) when +(z,y,t) = u(p,t)exp{id), with p = ( z2  + yZ)'/' and 
0 = tan-'(y/z), and (3.3) reduces to 

iu, + upp + p- 'uP - K 2 p -2 U + culul' = o 
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We remark that this equation has a similar form to (3.11), in particular, the coefficient 
of P is only changed by a factor of 2 in the second term; however, significantly, the 
coefficient of P' has only an imaginary part. This means that the form for @(p , t )  
will be unchanged from section 3.2, and is given by (3.13), but there is one less 
equation determining q ( t )  which tums out to be crucial. 

Proceeding in an analogous way to the previous section, we find that C must again 
be a constant and, as before, we set it to zero. Eliminating p ( =  2/17) in (3.21) yields 

(3.22) 

The coefficients of z 2 P  and P are constants, say 6 and p, respectively, thus 

(3.23) 

There are three sets canonical solutions for these equations: 

q ( t )  = 1/t1I2 + o ( t )  = -pint (3.24~) 

V(t) = l / t  +"(t) = P / t  (3.246) 

q( t )  = t I)'/' +o(t) = - p  tan-' t (3.24~) 

for 6 = &, 6 = 0 and 6 = -$, respectively. Hence we obtain the following three 
reductions: 

(3.25~) 

(3.25'6) 

U( p ,  t )  = t-'/'P( z )  exp{i( ;z2 - p In t )  1 
v ( p , t )  = t- ' /zQ(z)exp{-i(~z2 - p Int)}  

with z = p / t ' l z ;  

+,t) = t-'P(z)exp{i(ip2 t p)/ t}  (3354 

v ( p , t )  = t-'Q(z)exp{-i(apZ + p ) / t }  (3.26b) 

with z = p/t; and 

u(p, t )  = (tZ + l)-'/'P(z)exp - LL tan-' t ]  } (3.27~) 

with z = p/(tz + Wr each reduction P ( z )  and Q(z)  satisfy 

P I '  + z - 'P  t d P 2 Q  t ( 6 z 2  + p - n Z / z Z ) P  = 0 (3.%) 

(3.28b) Q" t z-'Q' -t dPQ' t ( 6 z 2  -t p - K ' / z ' ) &  = 0 
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with 6 = h, 6 = 0 and 6 = -$, respectively. Setting P(z) = R(z)eup{iO(z)} and 
Q(z) = R(z)exp{-iO(z)} in these equations yields 

(3.29~) 

(3.2%) 

Equation (3.296) can be integrated to give zR2(z)O‘(z) = y, with y an arbitrary 
constant, then eliminating (3‘ in (3.2%) yields 

P A  Clarkson and S Hood 

R” - R(0’)’ t .z-’R‘ t dR3 t ( 6 z ’ t  p - K / 2 ) R  = 0 

RO” t 2R’O’ t t-’RO’ = 0. 

(3.30) 

In section 4, we obtain solutions of this equation expressed in terms of the second 
Painlev6 equation (if p + 0, 6 = 0 and K* = $), and elliptic functions (if p = 0, 
6 = 0 and K~ = 6). 

Hence we have shown that (3.20), a special case of the (2 + 1)-dimensional cubic 
nonlinear Schrodinger equation (2.5), has two additional symmetry reductions, i.e. 
(3.26) and (3.27), in comparison with (3.10), which has a quintic nonlinearity. These 
additional symmetry reductions are generated by the vector field 

U = p t a ,  + ( t Z  t b)a, - ( t  + ip - $ip’)ua, - ( t  - ip + :ip*)va, (3.31) 

with 6 = 0 for (3.26) and 6 = $ for (3.27). In the special case 6 = p = 0, the vector 
field (3.31) reduces to 

(3.32) 

which represents a conformal point symmetry and the associated one-parameter 
transformation group is 

U = pta, + t2a, - ( t  - $ipz)ua, - ( t  + $ip2)va, 

d = U( 1 - et)  exp (3.33~) P 
1 - E t  

#L?= - 

t i =  - 1 - Et G = v( 1 - e t )  exp (3.336) 

which is the Tahnov lens bnnsfomtnrion p l a n o v  1970). This transformation can be 
interpreted as the image of a field &(,6,i) produced by a thin optical lens with focal 
length 116. 

4. Painlev6 analysis of ODES rrsulting f” the CCNLS equation 

In this section we apply Painled analysis to the following equations 

R‘ RI‘+-+dR3+ 
2 

( 4 4  
Y Y2 +- p - - R +  - - - - ”’) 2 2  4R z2R3 - O  

R‘ R”+ - +2blR2R’+ cR’ + 
8 

(4.3) 
R‘ RI’+ - + 2blR‘R’t cRS + dR3 - 
8 
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4.1. Equalion (4.1) 
Making the transformation R(z) = W ‘ / ~ ( Z )  in (4.1) yields 

1 ww’ 
2 z 

w w ” -  -(w’)’+ - + 2dw3 + 2 (4.4) 

It is easily shown using the algorithm of Ablowitz et ai (1980) that this is of Painlev6 
type if and only if 6 = 0 and K’ = k, ie. for the special case of (4.4) given by 

Next we transform (4.5) into so-called standard form to allow us to find its 
solutions in terms of the classification of PainlevC and Gambier (Ince 1956). Following 
the procedure described by Ince, we make the transformation 

where +,, is a constant, which yields 

There are four cases to consider: 

Case 4.l(i). If p = y = 0 then (4.7) reduces to equation (XVIII) in chapter 14 of 
Ince (1956). Its first integral is 

(dW/dZ)’ = 4W( W, t W z )  

where W,, is the constant of integration, which is solvable in term of elliptic functions 
(if WO # 0), or elementary functions (if W, = 0). 

Case 4.I(ii). If p = 0 and y # 0 then we set +,, = $i(yd)’l3, and obtain a special 
case of equation (XXXIII) in chapter 14 of Ince (1956). Its first integral is 

(dW/dZ)2 = 4W3 + 4W,W t 1 

where W, is the constant of integration, which is also solvable in terms of elliptic 
functions (if W, # 0), or elementary functions (i W, = 0). 

Case 4.l(iii). If p # 0 and y = 0, then we set +, = (-!jt)lI3 and obtain equation 
(XX) in chapter 14 of Ince (1956) 

-=-( dZW 1 d W  ) + 4 W Z + 2 Z W ,  
dZ2 2W dZ 

Setting W = Y2 yields 

_-  d2Y - 2 ~ 3  t ZY 
dZ2 

which is a special case of the second Painlev6 equation (P,*). 
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&e 4l(iv). Finally, with p # 0 and y 
rescaling W we obtain equation (XXXIV) in chapter 14 of ince (1956) 

P A  Clarkson and S Hood 

0, we set 6" = (4p)1/3, and after 

d2W 1 d W  1 
dZz 2W dZ 2 w  
-- --( ) + 4 a w z - z w - -  

with a = &3iyd/4mu. This equation has the solution 

where V( Z) satisfies P,, 

d2V/dZ2 = 2V3 + Z V  - 2a - $. 
For further details of exact solutions of (4.7) see Gagnon and Winternitz (1989~). 

4.2. Equation (4.2) 
Making the transformation R(z) = W ' / ~ ( Z )  in (4.2) yields 

w w  I ,  -?(TU) 1 I 2  +-+22blw2w'+2cw ww' 
z 

( 4 4  

Using the algorithm of Ablowitz et a1 (1980), it is easily shown that this equation is 
not of Painlev6 type (if either b, # 0 or c # 0). 

4.3. Equation (4.3) 

Making the transformation R ( r )  = W ' / ~ ( Z )  in (4.3) yields 

II w w' w w  -~(w')2+-+261w2w'+2cw4+2dw3+2 (A  - 
Z 

(4.9) 

There are three cases to consider 

Case 4.3(i). b, # 0. In this case it is easily shown that (4.9) is not of Painlev6 type. 

Case 4.3(i). b, = 0 and c # 0. In this case it is easily shown that (4.9) is of Painlev6 
type if and only if 

1 
16 

= - 3d2 A = - -  
16c 

ie. for the special case given by 

It ww' 3d2 2b2y 
w w  - $(w ' ) ' f  -+2cw4$2dw3+2 

2 

(4.10) 
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As for (4.9, we can transform (4.10) into standard form and thus solve it. 
If d # 0, then making the transformation 
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(4.11) 

to (4.10) yields the fourth Painlev6 equation (Prv) 

- dZW = - 1 (5) 2 3  + 2W3 + 4ZW2 + 2M'( Zz - a) + - P 
dZz 2W d Z  w 

with 
ZqcZr2 p=- 

33/2d 9d2 . 
16b27(-c)1/2 a =  

If d = 0, then making the transformation 

W ( 2 )  = Z-1/2W(z) Z ( Z ) = ~ ( - ! . C ) ~ / ~ Z ~ / ~  3 (4.12) 
to (4.10) yields 

-- d 2 W  --( 1 d W  ) + p 3 - a w + -  3 P 
dZ2 2 W  dz W 

(4.13) 

with a = b2y/c and p = -3y2/(2c), which is solvable in terms of Jacobian elliptic 
functions. 

We remark that Gagnon and Par6 (1990) obtained approximate solutions of (4.9) 
with b, = 0 using a variational technique and compared the results with numerical 
simulations. 

Case 4.3(iu). b, = 0 and c = 0. In this case it is easily shown that (4.9) is of 
Painlev6 type if and only if d = 0, in when it simplifies to 

ww' + $) w2 - 2." = 0. (4.14) 
2 2  

Making the transformation w( z )  = z-'y(z), x = 2X1/2 z ,  yields the Pinney equation 

The general solution of (4.15) is given by 

y(2) = (y: + %)1/1 

(4.15) 

(4.16) 

where y l ( r )  and y2(x) are linearly independent solutions of the Whittaker equation 

satisfying 

dY2 dY 1 yl- - y2- = 1 dx dx 
(4.176) 

(Pinney 1950). 
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5. Coupled, cylindrical nonlinear SchrGdinger equation 

In this section we discuss symmetry reductions of the ( 2  + 1)-dimensional coupled 
nonlinear Schrildinger equations in cylindrical coordinates 
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ilc11J + + P - ' + ' , ~  t P-%,ee + (+k12 + PI+zIz)G1 = 0 (5.ln) 

i+z,l + &,pp + P - ' + z , ~  + P-%z,ee + ( ~ l & l ~  t ~ l~z12)+z  = 0 (5.lb) 

with a, p, y and 6 arbitrary constants (not all zero). Equation (5.1) is of particular 
interest in the field of transverse effects in nonlinear optics (cf Abraham and Firth 

The application of the direct method to equations (5.1) is very simiiar to that 
for (1.1) in section 3, and so we omit details. The method yields the following four 
symmetry reductions 

Example 5.1. The time-translational symmetry reduction 

1990). 

with z = p, and where PI(.) and Pz(z)  satisfy 

p;'t z-'pi - ( A +  K ~ / ~ ~ ) P ~  t ( a l ~ ~ 1 ~  t B ~ P ~ ~ ~ ) P ~  = o (5.3~) 

p; '$z - 'P ; - (At  ~ z / ~ 2 ) P ~ + ( y ~ P ~ ~ z + 6 ~ P z ~ 2 ) P z ~ 0 .  (5.36) 

It can be shown that these equations are not of Painleve-type (unless O( = p = y = 
6 = 0). 



JLmmetiy reductions of a GCNLS equation 147 

Ernmple 5.4. The generalized conformal point symmetry reduction 

$, (p ,e , t )  = ( t 2 +  ~ ) - ~ / ~ ~ ~ ( z ) e x p  i &e + pZt - p tan-' t ]  } 
d&e,t) = ( t z  t I ) - ' / ~ P ~ ( ~ ) ~ X P  i t 4(t2 p2' - p t a n - l t ] }  

with z = p / ( t Z  + 1)'j'. 

( 5 . h )  { 1 4( tZ+  1) 

( 1  (5.66) 

For the reduction in examples 5.2, 5.3 and 5.4, PI(.) and Pz(z)  satisiy 

~ t z ~ ' P ~ + ( 6 z Z t p - ~ Z / ~ Z ) P l + ( ~ ~ P l ~ 2 + ~ ~ P Z ~ z ) P l  = O  (5.7Q) 

~ + z ~ ' P ~ ~ ( 6 ~ 2 + p - ~ z / z 2 ) P z + ( y ~ P l ~ 2 + 6 ~ P z ~ Z ) P z = 0  (5.76) 

with 6 = &, 6 = 0 and 6 = -;, respectively. It can be shown that these equations 
are not of F'aiilev&type (unless a = p = y = 6 = 0). 

Gagnon (1992) has recently discussed the (classical) Lie symmetries of the special 
case of 

i$l,t + + P-%,,, + ~ - ~ + ~ , ~ s  t uII+112 t (1 t ~)1+z121+1 = 0 

i+z,t + +z,pp t P-'+~,,, t ~ - ~ $ ~ , ~ e  t a[(l+ h)1+1I2 + 1+z121+z = 0 

(5.W 

(5.W 

where U = fl, and obtained some exact and approximate solutions. In particular, 
Gagnon (1992) studied exact approximate solutions arising from the generalized 
conformal point symmetry reduction (5.6) by solving approximately (5.7) with a = 
6 = f l  and p = y = &(I + h), where h is a non-zero real parameter, using 
variational techniques. These approximate solutions were expressed in terms of 
Laguerre-Gauss polynomials and generalized earlier results due to Marburger and 
Felber (1978). 

6. me mdimensional nonlinear Schfidinger equation 

In section 3 we obtained a conformal point symmetry reduction of (3.1) in the form 

+,t) = f a P ( z ) a p I i ( w z  + l ~ ) / t I  (6.la) 

v ( p , t )  = tPQ(z)Bcp{-i(apZ + Ir)/tl (6.lb) 

with z = p / t ,  and where 01 and p are specified constants and p is an arbitrary 
constant. Here, we investigate whether analogous reductions arise for the ( n  + 1)- 
dimensional nonlinear Schrodinger equation with radial symmetly 

iut + V'U + C I Z L ~ ~ ~ U  = o (6.24 

where 
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This equation arises in various physical context describing the slowly varying envelope 
wave train io conservative dispersive systems. It is a generic equation describing the 
slowly varying envelope wave train in conservative dispersive systems. For c < 0 and 
U < 2 / ( n - 2 ) ,  if n > 2 or U < CO, if n < 2, then it has solitary wave solutions which 
are stable for U < 2 / n  and for U 2 2/n, there exist solutions of (6.2) which blow up 
at a 6nite time (cf LeMesurier et a1 1988a, Rasmussen and Rypdal 1986). Reductions 
of (6.2) have been considered by Gagnon and Wmternitz (1990) in cylindrical (n  = 1) 
and spherical (n  = 2) coordinates. 
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As in section 3, we rewrite (6.1) as the system 

iu, + V'U + c u ( u ~ ) ~  = 0 
- iu, + V*V + c ~ ( u u ) ~  = 0. 

Substituting (6.1) into (6.6), multiplying through by tZ-o exp{-i(ap2 + p ) / t }  and 
eliminating p yields 

P" +- (4a - 1)itrP'  + (n  - ~ ) z - ' p '  t [(a - 4a2) t2z2  t p t i(2an t p) t ]P 
+ ct2("ot1) P( PQ)" = 0. (6.4a) 

Q" - (4a - 1)itzQ' t ( R  - l)z-'Q' + [ a ( l -  4a)t2z2 + p t i(2an + p)t]Q 

t c t Z ( u @ + l ) ~ ( ~ ~ ) r  = 0. ( 6 . 4 )  

4 Up+l=O 2 C t R + p = O .  (6.5) 

In order for these to be ODES, then necessarily 

Hence we. see that (6.3) possesses a symmetry reduction of the form (6.1) with a = a 
and p = -l/c, provided that 

u n = 2  (6.6) 

which is the so-called critical dimension, and where P(z) and Q(z )  satisfy 

(6.7a) 

Q"+ - - 1  - + p Q + c Q ( P Q ) " = O .  (: ) ?  (6.76) 

It is easily shown that these equations are not of Painled type. 

symmetry reduction 
Similarly it can be shown that (6.3) possesses the generalized conformal point 

with z = p / ( t 2  t I)'/', if and only (6.6) holds. It is easily shown that these equations 
are not of Painlev6 type. 
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We remark that for all n and U ,  (6.3) also possesses the time-translational 
symmetry reduction 

where z = p and P( I) and Q( Z )  satisfy 

P ' + ( n - l ) ~ - ' P ' + [ p -  $ z ' ] P + c P ( P Q ) "  = O  (6. lOa) 

Q"+ (n - l)z-'Q' + [p  - azz]Q + cQ(PQ)" = 0 (6.105) 

and the scaling (or dilational) symmetry reduction 

u(p, t )  = t - l / ( Z u ) ~ ( z )  exp{i( i z z  - p In t ) ]  

w ( p , t )  = t - ' / ( 2 " ) ~ ( z ) e ~ p { - i ( 8 ~ ~  - p ~ n t ) ]  

(6.11~) 

(6.1 lb) 

where z = p / t 1 l 2  and P(z) and Q(z)  satisfy 

P " + ( ~ - l ) z - ' P - [ p - ~ z z ] P + c P ( P Q ) " = O  (6.1%) 

Q " + ( n - l ) z - ' Q ' - [ p -  ~ z * ] Q + c Q ( P Q ) " = O .  (6.12b) 

It is easily shown that (6.10) and (6.12) are not of Painlevd type. 
Hence we have demonstrated that the (n  + 1)-dimensional nonlinear Schriidinger 

equation (6.2) can have symmetry reductions associated with a conformal point 
symmetry only in the case of the critical dimension (6.6). 
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